РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Система управления блокировкой дверей AirLock CAN-IT

ООО «Инженерные Технологии»

г. Челябинск

1. Модульно-адаптивная система блокировки дверей (Interlock) «AirLock CAN-IT»

Описание продукта: Система «AirLock CAN-IT» предназначена для управления блокировкой дверей в чистых помещениях, таких как фармацевтические, биотехнологические и лабораторные комплексы. Она предотвращает одновременное открытие двух и более дверей, что исключает риск контаминации и поддерживает необходимый уровень чистоты в помещении. Система поддерживает гибкую настройку, легко интегрируется в существующие SCADA и другие автоматизированные системы управления.

Соответствие ГОСТ Р 56640-2015: Система «AirLock CAN-IT» разработана в полном соответствии с требованиями ГОСТ Р 56640-2015, который устанавливает стандарты для проектирования и монтажа чистых помещений. Это включает в себя контроль доступа, индикацию состояния дверей и интеграцию с системами безопасности.

Состав системы:

Система «AirLock CAN-IT» состоит из трех основных компонентов:

• Узлы управления: Управляют электромеханическими замками дверей, считывают состояния замков, кнопок и внешних сигналов (разрешение или блокировка). Группируются в виртуальные группы. После настройки могут работать в группе автономно, без участия сервера.

• Контроллер: Считывает состояния и события узлов и обеспечивает связь со SCADA системой через Ethernet. Управляет настройкой узлов. Соединяется с узлами посредством CAN-шины.

• **OPC-сервер:** Обеспечивает доступ SCADA систем к данным сервера и узлов, поддерживая централизованный мониторинг и управление.

Функциональные возможности:

• Группировка приборов: Из верхней программы осуществляется настройка групп приборов, функционирующих взаимосвязано, с индивидуальным временем разблокировки.

• Запрос на проход: Управление доступом через кнопки «вход» и «выход», с возможностью запроса на проход.

• Управление временем разблокировки: Возможность настройки задержки перед разблокировкой дверей, определяемой пользователем.

• Индикация состояния: Световая и звуковая индикация на дверях, показывающая статус (блокировка, разблокировка, ошибка).

• Интеграция с системами безопасности: Поддержка внешних сигналов, таких как пожарная сигнализация, для автоматического разблокирования всех дверей.

• Контроль ошибок: Система контролирует ошибки, такие как незакрытые двери или открытие заблокированной двери, и информирует пользователя.

• Физические кнопки: Система оснащена физическими переключателями для экстренной разблокировки или блокировки дверей, с приоритетом функции разблокировки при одновременном нажатии кнопок блокировки и разблокировки.

• Автономная работа: Система продолжает функционировать даже при выходе из строя основного сервера, что обеспечивает высокую надежность и бесперебойность работы.

• Дополнительные возможности управления через SCADA: Поддержка централизованного мониторинга и управления электромеханическими замками через OPC-сервер.

• Связь: Интерфейс CAN для связи с узлами и сервером, Ethernet для интеграции с SCADA через OPC-UA.

2. Сервер управления «Контроллер Airlock-S»

Считывает состояния и события узлов и обеспечивает связь со SCADA системой через Ethernet. Управляет настройкой узлов. Соединяется с узлами посредством CANшины.

Конструктивно прибор предназначен для крепления на DIN-рейку.

Сделан на основе прибора **Гигротермон-САN**. Во время работы дисплей ничего не отображает.

Наименование	Значение
Напряжение питания постоянное, В	(1224) ±12,5%
Ток, потребляемый изделием при напряжении 24 В, не более, мА	60
Интерфейс внешней связи	Ethernet TCP/IP
Тип интерфейса для связи с узлами управления	CAN
Максимальная длина линии связи с узлами управления Airlock-N, м.	200
Степень защиты корпуса	IP20
Габариты, мм	$90,2 \times 71 \times 57,5$
Масса, г	275
Диапазон эксплуатации по температуре/влажности, °С/%	-40+60 / 095
Диапазон хранения по температуре/влажности, °С / %	-40 +40 / 0 80
Диапазон хранения и эксплуатации по атмосферному давлению, кПа	84,0 106,7

Таблица 1 – Технические характеристики контроллера Airlock-S.

3. Внешние подключения прибора-сервера

Таблица 2 – Обозначение	разъемов	конт	роллег	a Airlock-S
	passenies	nom		

№	Обозначение		Назначение		
1	+1224	Питание сервера	Питание сервера		
2	GND		Питание общ.		
2	+12.24	Линия CAN	Питание по линии CAN, равно напряжению		
3	+1224		питания сервера		
4	GND		Линия CAN, общий		
5	Н		(CAN_H)		
6	L		(CAN_L)		
7	Ethernet		Подключение к ПК или локальной сети		
*Разъемы Alarm и RS485 прибором не используются.					

4. Узел управления «AirLock CAN-IT»

Описание продукта: Узел управления является ключевым компонентом системы «AirLock CAN-IT», предназначенным для управления электромеханическими замками дверей, мониторинга их состояния и обработки внешних сигналов в рамках чистых помещений. Узел управления отвечает за выполнение команд блокировки и разблокировки дверей, считывание состояния дверей и замков, а также за управление световой и звуковой индикацией.

Конструктивно прибор предназначен для крепления на DIN-рейку.

Функциональные возможности узла управления:

• Управление замками: Узел управления осуществляет контроль за состоянием электромеханических замков, включая их блокировку и разблокировку.

• Считывание состояния: Узел мониторит текущее состояние дверей (открыта/закрыта) и замков (заблокирован/разблокирован).

• Индикация состояния: Узел управления отвечает за работу световой и звуковой индикации на дверях, информируя о текущем статусе.

• Связь: Узел принимает сообщения от других узлов в группе о событиях открытия-закрытия дверей и сам передаёт такие события по мере их появления.

• Контроль внешних сигналов: Узел обрабатывает внешние сигналы, такие как команда разблокировки при пожарной тревоге, обеспечивая безопасность и соответствие стандартам.

• Физические кнопки: Узел управления поддерживает физические кнопки для экстренной разблокировки и блокировки дверей, с приоритетом функции разблокировки.

• Функционирование: Совместная работа узлов не требует постоянного присутствия сервера.

Входы:

1. Пожарная сигнализация (разблокировка): Активация внешней пожарной сигнализации приводит к разблокировке всех дверей системы.

2. Блокировка двери: Управление блокировкой двери на уровне узла.

3. Состояние двери: Мониторинг текущего состояния двери (открыта/закрыта).

4. Состояние замка: Контроль состояния замка двери

(заблокирован/разблокирован).

5. Кнопка входа: Управление доступом через кнопку «вход».

6. Кнопка выхода: Управление доступом через кнопку «выход».

Выходы:

1. Питание замка: Подача питания на электромеханический замок двери.

2. Цепь управления замком: Управление открытием и закрытием замка.

3. Входная кнопка - лампа зеленая: Индикация разрешения доступа на входе.

4. Входная кнопка - лампа красная: Индикация запрета доступа на входе.

5. Выходная кнопка - лампа зеленая: Индикация разрешения доступа на выходе.

6. Выходная кнопка - лампа красная: Индикация запрета доступа на выходе.

7. Авария (лампа/контакт): Срабатывает при ошибках, например, если дверь остается открытой в течение установленного времени.

Наименование	Значение
Напряжение питания	(1224) ±12,5%
Ток потребления (без учета электрозамка), мА	60 мА
Количество подключаемых кнопок разблокировки	2 (HO (NO))
Коммутируемый ток цепи замка, А, не более 0,5	0,5
Входы датчиков контроля двери	2 (геркон, датчик холла)
Интерфейс CAN для связи с узлами и контроллером системы	CAN
Степень защиты корпуса	IP20
Габаритные размеры (без учета внешних антенн), мм	$90,2 \times 71 \times 57,5$
Масса, г, не более	260
Диапазон эксплуатации по температуре/влажности, °С / %	-40 +60 / 0 95
Диапазон хранения по температуре/влажности, °С / %	-40 +40 / 0 80
Диапазон хранения и эксплуатации по атмосферному давлению, кПа	84,0 106,7

Таблица 3– Технические характеристики узла управления Airlock-N.

5. Подключение узла управления Airlock-N

Таблица 4 – Назначение контактов узла управления Airlock-N.

N⁰	Обозначение	Назначение		N⁰	Обозначение	Наз	начение
1	BT1_LED2	[LED Закрыто	13	SF_IN	ω	Геркон
2	BT1_LED1	Кн	LED Открыто	14	SF_OUT	ле	Геркон
3	GND	ЯПС	Общий	15	HALL_IN	ктр	Датчик холла
4	BT1_SWIN	ca 1	Кнопка	16	HALL_OUT	OM 3an	Датчик холла
5	BT1_PWR	-	Пит. 10-30В	17	COIL_PLUS	агн 10к	Катушка замка
6	BT2_LED2]	LED Закрыто	18	COIL_GND	ИИТ	Катушка замка
7	BT2_LED1	Кн	LED Открыто	19	CNTRL_PLUS	ны	Цепь управления ¹
8	GND	HIC	Общий	20	CNTRL_GND	И	Цепь управления ¹
9	BT2_SWOU	(a 2	Кнопка	21	U_UNLCK1	Режим	Вход 24B ²
10	BT2_PWR		Пит. 10-30В	22	U_UNLCK2	Блокировка	Общий
11	+1224		Питание узла	23	U_LCK1	Режим	Вход 24B ³
12	GND		Питание общ.	24	U_LCK2	Аварийная разблокировка	Общий
				25	ALR1	Сигиолирония	Выход сигн. ⁴
				26	ALR2	Сигнализация	Вход сигн. ⁴
При	Примечания:						

1 – При подаче напряжения на цепь управления замок отключается;

2 – Наличие напряжения блокирует замок;

3 - Отсутствие напряжения отключает замок;

4 – При снятой перемычке «питание сигнализации» работает как сухой контакт. Если перемычка установлена, то питание сигнализации берется с узла, а вход сигнализации не используется;

Подключение внешней сигнализации

 а) – перемычка снята, выход как «сухой контакт». б) – перемычка установлена, питание сигнализации берется с узла.

S1, S2 – Переключатели

Разъемы RJ-9 Предназначены для подключения к контроллеру и другим узлам по линии CAN. Разъемы равнозначные.

Узел в линию (линия CAN) подключается только по принципу общей шины.

На последний в линии узел устанавливается перемычка терминатор на штыревой разъем (разъем находится внутри узла, для доступа к перемычке можно снять верхнюю крышку).

Обозначение контактов для разъемов «4Р4С» (RJ9), применяемых для линии CAN указано на рисунке.

1 "Витая пара" 4 Добозначение контактов разъема 4Р4С (RJ9)				
Номер контакта	1	2	3	4
Назначение контакта	CAN_L	CAN_H	GND	12-24B
Рекомендуемый цвет Линия CAN	Оран- жевый	Бело- оранжевый	Синий	Бело- синий

Рисунок – Обозначение контактов для разъемов «4Р4С» (RJ9)

6. Настройка IP-адреса контроллера Airlock-N для подключения к программе

Перед настройкой прибор необходимо подключить к ПК по проводному каналу Ethernet.

Для поиска устройства в локальной сети необходимо воспользоваться программой NetModuleConfigure (https://gigrotermon.ru/download/po/NetModuleConfigure.zip).

В открывшемся окне программы необходимо нажать кнопку «Search»

В списке появятся IP-адреса найденных в сети приборов.

Одинарным кликом выбрать в списке прибор с именем Airlock.

Basic		
Name:	Airlock	(?)
DHCP:	□ 0n	(?)
IP:	192 . 168 . 1 . 192	(?)
Mask:	255 . 255 . 255 . 0	(?)
Gate¥ay:	192 . 168 . 1 . 1	(?)
Serial Nego:	🗆 On	(?)

На панели «**Basic**» в поля «**IP**», «**Mask**» и «**Gateway**» ввести требуемые параметры (на рисунке приведены для примера)

На панели «Port 1» должны быть установлены настройки, показанные на рисунке

Mode:	TCP SERVER 💌	(?)
Local Port:	🗆 Random 3000	(?)
Conn Type:	IP 💌	(?)
Dest IP:	192 .168 . 1 .203	(?)
Dest Port:	7586	(?)
Baud:	9600 👻	(?)
Data Bit:	8 🗸	(?)
Stop Bit:	1 -	(?)
Parity:	None 🔻	(?)
Conn Lost:	🔽 Close Conn	(?)
Pack Len:	512 (<=512)	(?)
Pack TimeOu	t: 0 (10ms)	(?)
Reconnect:	Clear Buff	(?)

По нажатию кнопки «Set ALL» все новые настройки запишутся в прибор. Сетевой модуль прибора автоматически перезагрузится и станет доступен по новому IP-адресу.

7. Запуск ОРС-сервера. ОС Linux

Открыть папку с файлом орс_server (предоставляется по запросу) Открыть терминал и ввести:

./opc_server --ip < server_1_ip, sever_2_ip, .. >

где server_#_ip – ip адрес прибора-сервера (может быть несколько).

Дальнейшая настройка узла производится через OPC-UA Client или SCADA-систему.

8. Настройка узла на примере OPC-UA Client. Подключение.

В поле «соединения» указывается IP-адрес компьютера, с которого был запущен OPC-сервер (если OPC-сервер и OPC-UA client запущены с одного компьютера, оставить значение localhost). Порт для подключения OPC GUI к OPC-сервер на 4855. Подключение происходит по нажатию на кнопку «Connect», справа от поля соединения.

*	FreeOpcUa Client			~ ^ X
Actions Settings				
opc.tcp://localhost:4855	~	Connect options	Connect	Disconnect

При успешном соединении с ОРС-сервером в прямоугольной области под полем соединения появится структура адресного пространства.

pc.tcp://192.108.1./1:485		
DisplayName	BrowseName	Nodeld
🕶 📕 Root	0:Root	i=84
Objects	0:Objects	i=85
Types	0:Types	i=86

В выпадающем списке «**Objects**» отображаются физические сервера (контроллеры Airlock-S), подписанные как *Server[mac address]*.

8.1. Настройка узла на примере OPC-UA Client. Параметры управления сервером. Server[mac address]

Внутри выпадающего списка Server[mac address] находятся группы узлов принадлежащие данному серверу (NodeGroup[group_number] или UnknownNodeGroup) и параметры управления сервером:

DisplayName	BrowseName	Nodeld
💌 🔳 Root	0:Root	i=84
👻 🔳 Objects	0:Objects	i=85
🕨 🔴 Server	0:Server	i=2253
Server[B0:B2:1C:91:6F:94]	0:Server[B0:	ns=2;i=0
FindServer	0:FindServer	ns=2;s=FindServer[B0:B2:1C:91:6F:94]
GetNodeList	0:GetNodeList	ns=2;s=GetNodeListServer[B0:B2:1C:91:6F:94]
NodeGroup[1]	0:NodeGroup	ns=2;i=1
SetDoorLockTime	0:SetDoorLoc	ns=2;s=SetDoorLockTimeServer[B0:B2:1C:91:6F:94]
SetErrorTimeoutTime	0:SetErrorTi	ns=2;s=SetErrorTimeoutTimeServer[B0:B2:1C:91:6F:94]
SetFreePassTime	0:SetFreePas	ns=2;s=SetFreePassTimeServer[B0:B2:1C:91:6F:94]
🕨 🔳 Types	0:Types	i=86
Views	0:Views	i=87

– *FindServer* – найти сервер (на указанном контроллере Airlock-S по очереди зажгутся и погаснут 3 светодиода);

- GetNodeList – получить(обновить) список узлов;

– SetDoorLockTime – назначить таймаут блокировки двери для всех узлов текущего сервера;

- SetErrorTimeoutTime – назначить таймаут до начала аварии для всех узлов текущего сервера;

– *SetFreePassTime* – назначить таймаут свободного прохода для всех узлов текущего сервера.

– *NodeGroup[group_number]* – группа известных узлов. Содержит узлы, которые уже были настроены и получили уникальные параметры. Параметр **group_number** — отображает порядковый номер группы.

– UnknownNodeGroup – неизвестные узлы, которые не определены ни в какую группу. В пределах одного сервера может быть только одна UnknownNodeGroup — если все узлы уже определены в группы, то параметр не отображается.

Неизвестный узел представляет собой узел с нулевой группой и нулевым id. Неизвестные узлы не реагируют на события других узлов того же сервера. Что бы сделать узел известным нужно изменить ему номер группы и id.

8.2. Настройка узла на примере OPC-UA Client. Параметры управления группой узлов. NodeGroup[group_number]

В выпадающем списке NodeGroup[group_number] представлены узлы,

обозначенные как Node[group_number:node] (где group_number — номер группы, node

— номер узла в группе) и параметры управления этой группой.

*		Root	0:Root i=84
	*	Objects	0:Objects i=85
		🕨 🛑 Server	0:Server i=2253
		Server[B0:B2:1C:91:6F:94]	0:Server[B0: ns=2;i=0
		FindServer	0:FindServer ns=2;s=FindServer[B0:B2:1C:91:6F:94]
		🕨 🚍 GetNodeList	0:GetNodeList ns=2;s=GetNodeListServer[B0:B2:1C:91:6F:94]
		NodeGroup[1]	0:NodeGroup ns=2;i=1
		Node[1:1]	0:Node[1:1] ns=2;i=2
		Node[1:4]	0:Node[1:4] ns=2;i=4
		OpenNodeGroup	0:OpenNode ns=2;s=OpenNodeGroup[1]
		SetDoorLockTime	0:SetDoorLoc ns=2;s=SetDoorLockTimeNodeGroup[1]
		🕨 🚍 SetErrorTimeoutTime	0:SetErrorTi ns=2;s=SetErrorTimeoutTimeNodeGroup[1]
		SetFreePassTime	0:SetFreePas ns=2;s=SetFreePassTimeNodeGroup[1]
		SetDoorLockTime	0:SetDoorLoc ns=2;s=SetDoorLockTimeServer[B0:B2:1C:91:6F:94]
		SetErrorTimeoutTime	0:SetErrorTi ns=2;s=SetErrorTimeoutTimeServer[B0:B2:1C:91:6F:94]
		SetFreePassTime	0:SetFreePas ns=2;s=SetFreePassTimeServer[B0:B2:1C:91:6F:94]
	٠	Types	0:Types i=86
	۲	Views	0:Views i=87

- *OpenNodeGroup* – открыть группу узлов;

- SetDoorLockTime - назначить таймаут блокировки двери только для узлов в текущей группе;

- SetErrorTimeoutTime - назначить таймаут до начала аварии только для узлов в текущей группе;

– SetFreePassTime – назначить таймаут свободного прохода только для узлов в текущей группе.

8.3. Настройка узла на примере OPC-UA Client. Параметры управления узлом. Node[group_number:node]

Внутри выпадающего списка *Node[group_number:node]* находятся параметры

управления узлом.

Node[1:1]	0:Node[1:1]	ns=2;i=2
FindNode	0:FindNode	ns=2;s=FindNode[1:1]
IgnoreEventsNodes	0:IgnoreEven	ns=2;s=IgnoreNodesForNode[1:1]
NodeState	0:NodeState	ns=2;s=StateNode[1:1]
SetGroup	0:SetGroup	ns=2;s=SetGroupNode[1:1]
SetNode	0:SetNode	ns=2;s=SetNodeNode[1:1]

```
- FindNode - найти узел (узел начнет одновременно мигать светодиодами
```

(красным и зеленым, если светодиод двухцветный, то цвет будет желтым) на кнопках двери);

- IgnoreEventsNodes - игнорировать события других узлов текущей группы;

- *NodeState* - состояние узла;

- *SetGroup* - назначить номер группы;

- SetNode - назначить номер узла.

Внутри выпадающего списка SystemParamState отображается состоянием двери.

* 1	SystemParamState	0:SystemPar	ns=2;i=3
	E DoorState	0:DoorState	ns=2;s=DoorStateNode[1:1]
	ErrorSourceState	0:ErrorSourc	ns=2;s=ErrorSourceStateNode[1:1]
	FreePassSourceState	0:FreePassSo	ns=2;s=FreePassSourceStateNode[1:1]
	LockState	0:LockState	ns=2;s=LockStateNode[1:1]

- *DoorState* - состояние двери (1 - открыта, 0 - закрыта);

- *ErrorSourceState* - состояние аварии (1 - активно, 0 - неактивно);

- *FreePassSouceState* - состояние свободного прохода (1 - активно, 0 - неактивно);

- LockState - состояние замка (1 - заблокирован, 0 - разблокирован).

8.4. Настройка узла на примере OPC-UA Client. Изменение параметров управления.

Для изменения параметра необходимо выбрать соответствующий элемент в структуре адресного пространства ОРС-сервера, затем в правой части окна найти атрибут Value, ввести его значение и подтвердить его нажатием клавиши Enter.

Attribute 🔺	Value	DataType
AccessLevel	CurrentRead	Byte
BrowseName	0:SetGroup	QualifiedName
DataType	Int64	Nodeld
DisplayName	LocalizedText(Lo	LocalizedText
Historizing	False	Boolean
NodeClass	2	Int32
Nodeld	ns=2;s=SetGrou	Nodeld
UserAccessLe	CurrentRead,	Byte
 Value 		Int64
Value	1	VariantType.Int64
Server	None	DateTime
Source	2024-11-05T11:	DateTime
ValueRank	-1	Int32

Для отображения изменений рекомендуется разорвать соединение с OPC-сервером и подключиться повторно, последовательно нажав кнопки Disconnect и Connect, расположенные справа от поля соединения.

При изменении параметров FindServer и FindNode с значения false на true переподключение к OPC-серверу не требуется — соответствующий параметр автоматически возвращается в исходное состояние (false) после выполнения действия. Все параметры таймаутов указываются в секундах.

Чтобы определить узел в конкретную группу, необходимо изменить его параметр **SetGroup**, указав требуемый номер группы. Если указанная группа отсутствует, она будет создана автоматически.

Рекомендуется также сразу присвоить узлу уникальный идентификатор внутри группы с помощью параметра **SetNode**.